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A grid free method for approximating incompressible boundary layers is introduced. 
The computational elements are segments of vortex sheets. The method is related to the 
earlier vortex method; simplicity is achieved at the cost of replacing the Navier-Stokes 
equations by the Prandtl boundary layer equations. A new method for generating vorticity 
at boundaries is also presented; it can be used with the earlier vortex method. The applica- 
tions presented include (i) flat plate problems, and (ii) a flow problem in a model cylinder- * 
piston assembly, where the new method is used near walls and an improved version of the 
random choice method is used in the interior. One of the attractive features of the new 
method is the ease with which it can be incorporated into hybrid algorithms. 

INTRODUCTION 

Some time ago we introduced a random vortex method for solving the Navier- 
Stokes equations [4]. The idea of the method was to approximate Euler’s equations by 
analyzing the interaction of vortices, and then introduce the effects of viscosity by 
adding to the motion of the vortices an appropriate random component. This method 
has been further developed by, among others, Ashurst [I], Leonard [14, 151, Meng 
[19], Rogallo [20], and Shestakov [23, 241, and theoretical analyses have been carried 
out by Marsden et al. [17-S], among others. One attractive feature of the method is 
the fact that the tangential boundary condition is satisfied through vorticity creation, 
a procedure which mimics an essential physical phenomenon (see [2, 16,251). 

That method has of course not solved all the outstanding problems of high Reynolds 
number flow. Some of the difficulties in its use have been: (i) the rate of convergence 
near boundaries has been slow, and as a result it is not always easy to ensure that the 
results obtained are independent of numerical parameters except possibly when points 
of separation can be determined a priori; (this point has been investitigated by Ashurst 
[l] and Rogallo [26]); (ii) the dependence of the method on an assumed structure of 
the vortices makes analysis difficult, in particular in the three dimensional case (see 
e.g. Leonard [14], [15]); (iii) in interior flow problems, the cost of the calculation can 
be substantial (see e.g. Ashurst [l]); Shestakov [23], [24] has derived a hybrid method 
which partly overcomes this difficulty. In the present paper, we present a new vorticity 
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generation method which should overcome problem (i) above, and introduce a related 
vortex method which solves the Prandtl boundary layer equations; in this method the 
vortex interaction is not singular, problem (ii) disappears, and the method can be 
used near boundaries in hybrid methods. A more general (but much more complicated) 
vortex method for the analysis of three dimensional turbulent boundary layers will be 
described elsewhere [7]. 

PRINCIPLE OF THE METHOD 

The boundary layer equations can be written in the form (see e.g. Schlichting [21]) 

at5 + (u . 0) 5 = vay2‘$, (la) 
f = -aa,u, (lb) 

a,u + auv = 0, (14 

where u = (u, v) is the velocity, u is tangential to the boundary and v is normal to the 
boundary, x is the spatial coordinate tangential to the boundary and y is the coordinate 
normal to the boundary, 6 is the vorticity and v is the viscosity. We assume the wall 
is at y = 0 and the fluid fills out the half-space y 3 0. The boundary conditions are 

u=Oaty=O, 

u(x, y = co) = U,(x). 
(24 

W 

Additional conditions may be needed on the left and/or on the right. Equation (Ic) 
can be integrated in the form 

V(U) = -as tff U(X, Z) dz 

and Eq. (lb) yields 

4x9 v> = urn - s v* &, 4 dz. W-4 
It can be readily seen that if 5 is known, (3a) and (3b) yield u and v. 

Consider a collection of N segments Si of vortex sheets, of intensities ti , i = I,..., N 
(i.e., segments of a straight line such that u on one side of Si and u on the other side 
Of Si differ by &). S, is parallel to the x axis, of length h and center xi = (xi , JQ). The x 
component of the velocity Of Si due to the presence of the other segments can be found 
from (3b), which yields approximately 

(44 
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where 

dj = 1 - (I xi - xI I/h) (3 

and the sum C is over all Sj such that 

yj > yi and 1 xi - xi [ < h w 
(i.e., 0 < dj < 1). 

The vertical velocity vi of Si can be approximated from (3a) by 

vi = -(I, - IJh (W 

where II and I, approximate respectively JF u(x + h/2, y) dy and J-i’ U(X - h/2, y) dy, 
and can be taken as 

4 = Udxi + h/2) yi - C &d+jy*j , 
jL 

9) 

I, = UOX(X~ - h/2) yi - C [jd-jy*j , .- 3 
(5c) 

where 

d+, = 1 - 1 xi + h/2 - xj I/h, (54 

d-j = 1 - 1 xi - h/2 - xj I/h, (54 

Yap = min(.h, yd, m 

the sum C+ is over all Sj such that 0 < dfj < 1 and the sum C- is over all S, such that 
0 < d-j < 1. Note that the total number of interactions between vortex sheets is small, 
in particular in comparison with what happens when point vortex interactions are 
taken into account; one can use sorting algorithms to minimize the number of deci- 
sions involved in carrying out the several summations. 

Thus, the motion of vorticity described by the equations 

a*5 + (u - VI 5 = 0, 
a,24 + a,v = 0, 

5 = --a,24 

can be approximated by 

x:+1 = xin + kui , 

y;+1 = Yin + kt’i , 
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where k is a time step, and xin 3 x&k), yin = y&k). The effect of viscosity can then 
be included by adding to the deterministic formula for yr+’ a random variable 7,~ 
drawn from a gaussian distribution with mean 0 and variance 2vk; this yields the 
algorithm 

,;+1 = xin $ ku; , (64 

y;+l = yin + kci + vi . (6b) 

The several values of Ti are independent, Ui is given by (4) and ui by (5). The boundary 
conditions u = U, at y = co and u = 0 at y = 0 are automatically satisfied; the 
boundary condition u = 0 at y = 0 will be satisfied through a vorticity creation 
operation described in the next section. The statistical error in Eq. (6) can be reduced 
by a tagging method which will also be described below. Note that no grid is 
introduced; there is no lower bound to the thickness of the boundary layer which can 
be resolved, and no differencing occurs across the layer. Furthermore, the solution is 
computed in the (x, y) plane, without a change of variables, and thus it should be easy 
to match the computed boundary layer solution with an inviscid solution outside the 
layer. 

VORTICITY CREATION 

In [4] we proposed the following algorithm for satisfying the tangential boundary 
condition on u: Let u0 be the flow satisfying the equation of motion and the boundary 
condition a0 = 0. If at the wall u0 # 0, the effect of viscosity will be to create a thin 
boundary layer near the wall; the total vorticity in the layer per unit length of the wall 
is 

i.e., one has to create a vortex sheet of strength U, per unit length of the wall; this 
vortex sheet is then broken up into elements and allowed to participate in the sub- 
sequent motion of the fluid. The vorticity elements which cross the wall are lost; their 
vorticity will of course be recreated at the next step. This construction was offered in 
[4] on heuristic and physical grounds. 

To understand the nature of the approximations made, it is adequate to consider 
the diffusive part of the equation, i.e., the diffusion equation a,5 = va,?$ with the 
boundary u = 0. The gaussian random variable provides an approximate solution of 
the whole space heat equation (since the Green’s function of the heat equation in the 
absence of boundaries is a gaussian function). The subsequent deletion of the vortices 
which cross the boundary and the creation of a vortex sheet of intensity u serve to 
project the solution of the whole space heat equation on the subspace of functions 
which vanish outside the domain of integration. This formulation is due to Marsden 
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and McCracken; its convergence as k ---f 0 in the case of linear equations such as the 
heat equation follows from the work of Kato [11, 121 (see [S] for a review). It has, 
however, been observed, computationally by Ashurst [I], Rogallo [20] and the author, 
and theoretically in [8], that the rate of convergence near the wall as k ---* 0 is slow, in 
particular since the boundary condition u x 0 on the wall is satisfied only in the limit. 
We therefore introduce an alternative to the earlier approximation in which the 
boundary condition is satisfied exactly except possibly at a finite set of values of t. The 
velocity field is extended across the wall at the beginning of each time step by the 
anti-symmetry U(X, -y) = -u(x, y), where the wall is assumed to be at y = 0. As a 
result, 5(x, -y) = [(x, y) for y # 0, and a vortex sheet appears at y = 0 if the 
tangential velocity does not vanish at the wall. This anti-symmetry replaces the 
vorticity creation operation used in earlier work. The whole space diffusion equation 
is then solved by a random walk, for a time k. using as initial data the extended 
solution. Algorithmically, this is equivalent to (i) creating a vortex sheet of strength 
2u, per unit length of the wall, and (ii) bouncing those vortices which cross the wall 
back into the fluid, i.e., if at the end of a time step a vortex finds itself at (xi , yi), 
yi < 0, it is returned to (xi , -y,). For some analysis, see [8]. ~ - 

Thus, we take points QI ,..., Qm at the wall, such that the distances QIQZ , QZQ3 
equal h. At each point Qi we evaluate the tangential velocity u0 , using the obvious 
specialization of Eqs. (4). We imagine then a vortex sheet of strength 2u, at Qi . In 
order to have a reasonable approximation of the diffusion equation at a later time, we 
create at Qi not a simple vortex sheet, but some number 1 of sheets such that the 
intensity of each is less in absolute value than a predetermined [,,, . At the next step, 
these sheets will behave according to the laws (6). Some obvious programming 
precautions must be taken: the vortex sheets which have just been created and are 
taking their first random step may jump out of the domain of integration; these should 
be lost and not bounced back (or else the wall symmetry will be violated). One must 
also ensure that the term &ei in the formula (4a) does not add an unnecessary horizon- 
tal component to the motion of the newly created sheets. 

A substantial reduction in the statistical error can be made by observing that in 
Eq. (1) diffusion takes place only in the y direction; thus the numbers yi used in (6) 
need be independent of each other only when they are used with vortex segments 
whose centers lie in a narrow strip perpendicular to the wall. This fact can be used in 
the following way: As vortices are created, they are assigned integer tags, mi being the 
tag assigned to the ith vortex sheet element. At each time step, a tag not used before is 
chosen and assigned to one vortex element at each boundary point Qj at which at least 
one element is created. A second tag is then chosen, and assigned to one element at 
each point where at least two elements are created, etc. The effect of the tagging is to 
piece together the elements created at the several boundary points into coherent 
vortex sheets, with the elements of each sheet identified by a common tag. When the 
random numbers 7i are chosen for use in (6), all elements with the same tag are 
assigned the same 7. This is the variance reduction procedure. In parallel flows, its 
effect is to make the sums in (5) identically zero (and thus reduce their variance 
to zero). 
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FLOW PAST A SEMI-INFINITE FLAT PLATE 

Consider a semi-infinite flat plate placed on the positive x axis, with a fluid of 
density 1 occupying the half plane y > 0. At time t = 0 the fluid is impulsively set in 
motion with velocity U, = 1. We shall apply our method to the analysis of this 
problem, with the aim of comparing the results with the well known solution (see, 
e.g., Schlichting [21]). 

The leading edge singularity presents no difficulty. One fairly minor detail requires 
some attention: we are going to compute over a finite length of the plate, say for 
0 < x < a. From Eqs. (1) it follows that no boundary condition need, or indeed may, 
be imposed at x = a, since the flow of information will be to the right only. However, 
formula (5a) is essentially a centered difference approximation to 2, J u dy, and may 
give rise to a spurious flow of information to the left. This is easily corrected by 
removing all vortex sheets which cross x = a and by not allowing those sheets whose 
centers lie between a and a - 2h to have any motion in they direction - they are thus 
merely convected downstream without disturbing the flow to their left. 

The numerical parameters at our disposal are h, k, and [,,, , The method is 
unconditionally stable, and h, k are constrained only by an accuracy requirement 
uk < O(h). Convergence should occur as h, k, f,, all tend to zero. As these param- 
eters decrease, the number N of sheets in the calculation increases, the amount of 
labor increases, but both the differencing error in (5) and the statistical error decrease. 

The calculations were pursued until a steady state had been reached and maintained 
for a while. In a steady state, the drag D on the portion of the plate between 0 and a 
point Xcan be evaluated from the momentum defect formula ([21, p. 1611) 

D = Im u(Um - u) dy, u = u(X, y). 
0 

The integral can be evaluated as follows: Consider all the vortex sheets Si, i = 1, 
2,..., A4 whose centers satisfy I xi - X 1 < h. Assume that they are numbered in such 
a way that y, < ya < y3 ,< *.. < y,, . Then we have approximately 

D = g ui(U, - ui) dyi , 
i=l 

where, as before, 

ui = U,(X) - && - ,j+l tjdj 9 

with dj = I xj - X l/h, dy, = yi - yipI , y. = 0. 
Define the streamwise Reynolds number 

R = U-J/v; 

to first order in R-Ii2 we have from boundary layer theory 

D = 0.664/R112. (7) 
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FIG. 1. Vortex sheets over a flat plate. 

FIG. 2. Horizontal velocity in Blasius flow. 

In Fig. 1 we display a typical vorticity configuration: an 0 corresponds to the 
center of a vortex sheet. This configuration was obtained with k = 0.2, h = 0.2, 
s max = 0.1 , v = 10-6, at t = 5.0. 

We found experimentally that for k < 0.2, h < 0.2, tmax < 0.1 the statistical error 
dominated all others; this error decreases rather slowly as the number of vortex sheets 
increases, but will not be particularly troublesome in later applications (see below). 
One method for reducing the statistical error in the steady state is to average the 
solution over a number of time steps (see [23,24]). In Fig. 2 we display the velocity 
profile averaged over 20 steps with v = 10-6, k = 0.2, h = 0.2, trnax = 0.1, 8 < t < 
12, compared with the analytic boundary layer solution. 

The drag computed at u = 10-6, averaged over 20 steps, is 6.69 x 1O-2, compared 
with the value 6.64 x 1O-2 obtained from (7). If one considers the successive values 
of D at the several time steps to be successive estimates of D, then the standard devia- 
tion of the computed answer is 0.4 x lo-“. At v = lo-*, the computed value of D is 
0.669, with standard deviation .04, compared to the value D = 0.664 obtained from 
(7). In all our calculations, the averages of the computed D converged to the mean 
value much faster than one would have expected from the estimates of the standard 
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deviation. No explanation is offered, and we do not know how general this effect may 
be. The typical number of vortex sheets in these runs is 100, and a typical running 
time is 20 seconds on the CDC 6400 computer at Berkeley. 

I also ran some problems where U, was not constant but had the form 

U, = 1 - A sin TLY. 

TABLE 1 

Separation and Reattachment 

x 

1 0.1 0.2 0.3 0.4 0.5 0.6 

0.04 0.34 0.15 0.00 -0.12 -0.04 0.04 

0.08 0.38 0.17 0.02 -0.10 -0.03 0.05 

0.12 0.39 0.18 0.03 -0.09 -0.01 0.06 

0.16 0.39 0.19 0.04 -0.07 0.00 0.09 

0.20 0.41 0.21 0.05 -0.06 0.01 0.09 

0.24 0.42 0.22 0.06 -0.05 0.02 0.10 

0.28 0.44 0.23 0.07 -0.05 0.02 0.11 

0.32 0.44 0.24 0.08 -0.03 0.04 0.11 

0.36 0.45 0.24 0.10 -0.02 0.03 0.12 

0.40 0.46 0.26 0.10 -0.02 0.04 0.13 

0.44 0.46 0.27 0.11 -0.00 0.05 0.13 

0.48 0.46 0.28 0.12 0.01 0.06 0.12 

0.52 0.47 0.28 0.14 0.03 0.07 0.12 

For large enouch A one expects separation, reattachment and a recirculation 
bubble. However, in a direct method (as opposed to an inverse method l-131) one 
expects the singularities at separation and reattachment to taint the solution (see 
[22,9]). In Table I we display some values of u obtained with k = .l, h = .l, [mm = 1, 
Y = 10-6, A = .2, averaged over 20 steps between t = 8 and t = 12. v = y/(X@” is 
the usual similarity variable, The negative values of u represent the recirculation 
region. A steady state was never achieved; the validity of the solution is unclear and 
it is in fact doubtful. No connection with the inverse method of Klineberg and 
Steger [13] was established. The effect of the singularities is widely believed to be 
removable by coupling the boundary layer calculation to the outer calculation; a 
method for doing this for another problem is described in the following section. 
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A HYBRID ALGORITHM INVOLVING THE RANDOM CHOICE METHOD 

We now present a hybrid algorithm in which the method described above is used 
near the boundaries while a different method is used in the interior of the domain. The 
two components of the algorithm are coupled, with the vortex sheet method serving 
as vorticity source for the interior method. An earlier hybrid method was presented by 
Shestakov [23,24]; in Shestakov’s work, a vortex blob method was used near the 
walls, and a difference method was used in the interior, with a coupling based on a 
careful use of spline interpolation. A hybrid method based on the use of vortex sheets 
near walls and vortex monopoles in the interior will be presented elsewhere [7]. 

Here we use as an interior method a version of the random choice method for 
compressible flow [5, 61. Thus, not only do we use different methods in the interior 
and near walls, but we also make different assumptions about compressibility: We 
have viscous incompressible flow near the walls and inviscid compressible flow in the 
interior. There are two sets of reasons for doing this: 

(a) Difficulties with interior viscosity. One may well believe that the numerical 
viscosity associated with finite difference or finite element methods has little effect as 
long as one stays away from walls, but it is not clear what “staying away from walls” 
should mean. The interior method must reach quite close to the walls, and earlier 
numerical experiments [23] indicate that unless the interior viscosity is tightly con- 
trolled, e.g., through the use of a very fine grid, the results may be substantially in 
error. The random choice method has effectively no numerical viscosity and is avail- 
able for use. Since all we want to do is demonstrate how the sheet method can be 
coupled to an interior method, the random choice method is acceptable, as long as 
the Mach number near the walls is reasonably small. 

(b) Ulterior motives. The methods of this paper will be used on the analysis of 
reacting gas flow, and in that context it is believed that the particular mixture of 
methods we use here will be most appropriate. 

The most important problem is to find a reasonable way for coupling the interior 
and the boundary. If it is known in advance that the boundary layer will not separate, 
this is trivial, since all one has to do is use tangential velocities from the interior as 
velocities at infinity for the boundary. In interesting cases it is, however, essential 
that the layer act on the interior as well, since it may have a crucial impact on the 
interior flow, and since some boundary-interior interaction is needed to counteract 
the separation singularity. In the examples described in the following section we 
proceeded as follows: used the tangential velocity at the wall of the interior calculation 
as velocity at infinity for the boundary layer calculation, and impressed upon the 
interior calculation the velocity normal to the wall induced by the boundary layer 
calculation. 

This last normal velocity was computed as follows: let P be a point at the wall, 
with coordinates ((E + 4) d, 0), where I is an integer and d is the grid size in the 
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interior. Themomentum lost due to the boundary layer aboveP can beapproximated by 

where dj = j xi - (I + 3) d l/h, (xi , yj) is the center of the vortex sheet Sj with 
vorticity ti, and the sum is over all Sj such that 0 < dj < 1 (see Eqs. (5)). Then the 
normal velocity at x = Id is approximately (Uz+,,, - Uz-,,,)/d. This velocity is 
imposed on the interior calculation at the boundary. 

The programming details of the joint vortex sheet-random choice calculation require 
a somewhat lengthy explanation, mostly because of the relative complexity of the 
random choice program. The equations solved in the interior are the usual Euler 
equations. As described in [5], one full step of the random choice method for these 
equations consists of four quarter steps of length k/2. Let V& = V(id, jd, nk) denote 
the solution vector. At the beginning of the step we have Vzj for i,j integers. In the 
first quarter step we compute VF;:$,j , in the second quarter step we compute 
v~;~~22,j+1,2 9 in the third quarter step we compute V~~?$ , and in the last quarter step 
we compute Vz:l. To obtain one new value for the vector V at a point one solves a 
Riemann problem, which is them sampled. The sampling strategies have been des- 
cribed in some detail in [6]; they involve “random” numbers 8. A Riemann problem 
is an initial value problem for the equations of motion in which the initial data are 
discontinuous. Its solution contains a slip line; i.e., a line which divides the fluid 
initially to the left of the discontinuity from the fluid initially to the right of the dis- 
continuity. 

Near the boundary, symmetry conditions can be used to formulate the appropriate 
Riemann problems. In the program used here, which is a refinement of the earlier 
program [5], the physical domain is not always fixed with respect to the computa- 
tional grid. All points are identified by an integer tag q, with q = 1 for points in the 
interior of the domain and q = 0 for points outside the domain. q is treated as a 
passive quantity and propagates as part of the calculation, depending on the relative 
position of the slip line and the sampling point. If q = 0 for both initial states in the 
Riemann problem no calculation need be carried out. If q = 1 for both states we have 
an interior point, and if we have two distinct values of q the boundary symmetry 
conditions are applied. As already partly described in [6], if the “random” numbers 19 
are picked so that the first two are > 0, the next two < 0, etc., and if the bottom and 
left boundaries coincide with lines x = Id, y = Jd, I, J integers, while the top and 
right boundaries coincide with lines x = (I’ + 4) d, y = (7 + +) d, I’, J’ integers, 
then stationary boundaries remain stationary on the grid. If the boundaries are chosen 
as we have just described, then one boundary layer calculation step must be made 
every two interior quarter steps, and the conditions at infinity for the boundary layer 
calculation can be updated and the normal velocity imposed on the interior only once 
every four quarter steps (i.e., once per whole interior step), the updating occurring 
whenever appropriate boundary data from the interior calculation are available. It 
should be obvious that the fact that the random choice method does not smear out 
vortex sheets immediately is helpful to the success of the method. 

5W7.7/3-10 
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The accuracy of the method has not yet been discussed. Clearly, our matching 
procedure is based on the assumption that the boundary layer thickness is at most 
comparable with d, i.e., d 3 O(R-1/2), where R is a Reynolds number based on an 
interior length scale and velocity. The accuracy of the interior Glimm method is at 
best O(d) (see [4]). Thus, the over-all accuracy is at best O(d) + O(R-li2). This is not 
a surprising estimate (see, e.g., [4] for a discussion), and if it can be shown to be 
realistic and to hold uniformly in R-lj2, it would represent a substantial achievement. 
There are of course no problems with stability, since each component of the hybrid 
method is unconditionally stable. 

APPLICATION TO Two DIMENSIONAL FLOW BEHIND A PISTON 

We now present an application of the preceding algorithm, an application for which 
the random choice interior method is well suited. We do so with words of caution. The 
belief that our method can handle properly the separation of a boundary layer is 
based more on hope than on hard analysis. The accuracy of the results is difficult to 
gauge through the inevitable statistical error. There are no reliable data for com- 
parison. The best that can be said is that the results are plausible, consistent with 
earlier work on similar problems (see, e.g., Bernard [3]), and consistent also with the 
belief that the effective diffusion of the scheme equals the nominal diffusion (i.e., that 
the computational results correspond to the Reynolds number explicitly imposed on 
the calculation and not to a numerical Reynolds number intrinsic to the method). 

FIG. 3. Piston-cylinder flow configuration. 

The flow configuration is shown in Fig. 3. A piston is pushed with velocity V into a 
chamber filled with gas. The initial density of the gas is p = 1, the initial pressure is 
p = 1, and the gas is initially at rest. The gas is assumed to be perfect, i.e., the internal 
energy is given by E = (p/p)/(y - l), where y = 1.4. The sound speed is c = (yp/p)li2. 
The viscosity v is measured in units in which (p/p) lj2 = 1 and the initial length of the 
chamber is 1. The width of the chamber is 1. Thus, the Reynolds number based on the 
velocity at infinity seen by the boundary layer and on the length of the chamber is 
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RY = V/V. Care is taken to ensure that the Mach number V/c < 1. V = 0 for t < 0, 
and assumes a constant value for t > 0. The displacement of the piston is X = Vt. 

In the absence of viscosity we would have a shock wave propagating into the gas, 
reflected at the far end, and then bouncing back and forth between the piston and the 
back wall. The random choice method would compute this flow with infinite resolution 
(see the analysis in [6]). Call this flow u,, = (u, , 0). 

The effect of v # 0 is to superimpose on u,, a rotational flow with the general 
pattern depicted in Fig. 3. The boundary layers on the top and bottom are slowed 
down and deflect some fluid at the piston towards the interior of the domain (see, 
e.g., [3]). We exhibit a calculation made with v = 10-3. This relatively high value of v 
is picked because the rotational effect we wish to exhibit decreases with v. It is clear 
that as v decreases our method does not break down. This v is as large as we could 
pick and still observe the constraint A = O(vt). The results below must be considered 
while keeping in mind (i) the built-in fluctuations of the random choice method, 
(iij the fact that the edge of the calculation is the edge of the boundary layer and not 
the boundary of the domain, and (iii) the coarseness of the interior grid. 

The following parameters were used: In the interior, d = l/13, k/d = 0.6, m, = 7, 
m2 = 3 (these integers are used in the generation of the numbers 19 which define the 
algorithm; see [5]). In the boundary layer, h = 24 = 2/13 and fmas = V/5. The 

TABLE II 

Horizontal Velocity behind a Piston (t = 1.846) 

Y 5113 6113 7:‘13 8/13 

x 

9,‘13 10/13 I l/13 12j13 1 

0 0.20 0.12 0.13 0.21 0.18 0.20 0.20 0.22 0.03 

l/l3 0.20 0.20 0.26 0.22 0.17 0.22 0.18 0.17 -0.01 

2113 0.20 0.18 0.18 0.27 0.24 0.20 0.20 0.21 0.03 

3113 0.20 0.25 0.22 0.21 0.23 0.20 0.19 0.17 0.01 

4113 0.20 0.22 0.20 0.20 0.19 0.19 0.19 0.17 0.00 

5!13 .20 0.20 0.20 0.22 0.22 0.20 0.19 0.20 0.02 

6,‘13 0.20 0.22 0.23 0.20 0.18 0.19 0.19 0.19 0.02 

7113 0.20 0.22 0.22 0.21 0.19 0.19 0.19 0.19 0.00 

81’13 0.20 0.19 0.20 0.19 0.20 0.19 0.19 0.21 0.00 

9/13 0.20 0.21 0.19 0.18 0.18 0.18 0.18 0.19 -0.00 

to/13 0.20 0.23 0.24 0.22 0.23 0.21 0.17 0.17 0.00 

11/13 0.20 0.17 0.21 0.25 0.18 0.16 0.19 0.18 -0.05 

12/13 0.20 0.19 0.23 0.19 0.27 0.25 0.19 0.13 -0.03 

1 0.20 0.21 0.16 0.21 0.21 0.22 0.22 0.04 -0.03 
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TABLE III 

Vertical Velocity behind a Piston (1 = 1.846) 

x 

Y 5113 6113 7113 8/13 9/13 10/13 11/13 12/13 1 

0 0.04 -0.04 0.01 -0.02 0.03 0.04 0.01 0.01 -0.01 

l/13 -0.12 -0.09 -0.00 0.03 -0.01 0.03 0.06 0.04 0.01 

2113 0.02 -0.04 -0.03 0.02 .Ol 0.00 0.01 0.03 0.01 

3/13 0.02 0.00 0.01 0.01 -0.02 0.02 0.02 -0.00 0.00 

4113 -0.04 -0.04 -0.04 -0.03 -0.01 -0.00 0.01 0.01 -0.01 

5/13 0.03 0.03 0.04 0.03 0.02 0.00 -0.01 -0.04 -0.03 

6/13 -0.01 -0.03 -0.04 -- 0.03 -0.01 0.01 0.01 0.01 0.02 

7/13 -0.01 -0.01 -0.01 0.01 0.03 0.02 0.02 0.02 0.00 

8113 0.01 0.01 -0.01 0.00 0.01 0.01 0.01 o.oi 0.02 

9113 0.04 0.01 -0.01 0.02 0.00 0.02 -0.00 0.04 0.03 

10/13 0.01 -0.02 -0.01 -0.01 0.02 -0.03 -0.02 -0.02 -0.02 

11/13 0.08 0.01 -0.03 0.02 0.00 -0.02 -0.01 -0.03 -0.01 

12/13 0.12 -0.01 -0.07 0.03 -0.01 -0.05 -0.07 -0.07 0.01 

1 0.13 -0.03 -0.09 0.02 -0.04 -0.06 -0.03 -0.01 -0.02 

FIG. 4. Velocity in the piston-cylinder flow. 
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FIG. 5. Vorticity in the boundary layer of the piston-cylinder flow. 

results displayed are at t = 4Ok = 1.846, when X = displacement of the piston = 
0.3692. In Tables II and III we display the values of the horizontal and vertical 
velocity fields. In Fig. 4 we plot the vectors (U - u,, , u), i.e., the difference between 
the flow with v = 0 and the flow with v # 0. The correct rotational behavior can be 
observed. In Fig. 5 we display the positions of the vortex centers in the lower half of 
the domain. At this t, there are 531 vortex sheets in the calculations, and the total 
computing time has been 9 minutes on a CDC 6400 computer. It must be pointed out 
that the boundary layer thickness is 0((vt)‘12); i.e., it varies from 0 to O(d), and that 
we are considering effects induced by the internal mechanics of the boundary layer, 
which would normally require a fine grid for adequate resolution. 

CONCLUSION 

We have presented a grid free method for studying boundary layers. The two main 
features of this method are: (i) the use of vortex sheet segments as computational 
elements, and (ii) a new method for generating vorticity at walls. It is expected that 
this algorithm will be mainly useful as a component of hybrid methods, and an 
example of such use has been given. 

One can see that an algorithm based on non-rotating vortex sheets cannot reproduce 
the effects characteristic of turbulent boundary layers (see, e.g., [7]). Turbulence 
effects can conceivably be taken into account by replacing the molecular viscosity 
which determines the variance of the random variable 7 by an eddy viscosity. How- 
ever, in later work we expect to use our present algorithm as a vorticity generation 
method for a hybrid method, in which the main part of the calculation will be carried 
out through the use of vortex elements of more elaborate structure; the sheets will be 
effectively relegated to the viscous sublayer. 

It is obvious that a price must be paid for the removal of numerically induced 
viscosity in our method, and this price is statistical error. It is hoped that there will 
be a substantial number of applications in which such price is worth paying. It is also 
obvious that the present method generalizes trivially to three dimensional flows. 

Note. The programs used to obtain the results above are available from the author. 
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